28 research outputs found

    The potential of fractional order distributed MPC applied to steam/water loop in large scale ships

    Get PDF
    The steam/water loop is a crucial part of a steam power plant. However, satisfying control performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional order model predictive control was studied in this paper to improve the control performance of the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale ships. Then, the model predictive control with an extended prediction self adaptive controller framework was designed for the steam/water loop with a distributed scheme. Instead of an integer cost function, a fractional order cost function was applied in the model predictive control optimization step. The superiority of the fractional order model predictive control was validated with reference tracking and load fluctuation experiments

    Towards an autonomous landing system in presence of uncertain obstacles in indoor environments

    Get PDF
    The landing task is fundamental to Micro air vehicles (MAVs) when attempting to land in an unpredictable environment (e.g., presence of static obstacles or moving obstacles). The MAV should immediately detect the environment through its sensors and decide its actions for landing. This paper addresses the problem of the autonomous landing approach of a commercial AR. Drone 2.0 in presence of uncertain obstacles in an indoor environment. A localization methodology to estimate the drone's pose based on the sensor fusion techniques which fuses IMU and Poxyz signals is proposed. In addition, a vision-based approach to detect and estimate the velocity, position of the moving obstacle in the drone's working environment is presented. To control the drone landing accurately, a cascade control based on an Accelerated Particle Swarm Optimization algorithm (APSO) is designed. The simulation and experimental results demonstrate that the obtained model is appropriate for the measured data

    Nonlinear predictive control applied to steam/water loop in large scale ships

    Get PDF
    In steam/water loop for large scale ships, there are mainly five sub-loops posing different dynamics in the complete process. When optimization is involved, it is necessary to select different prediction horizons for each loop. In this work, the effect of prediction horizon for Multiple-Input Multiple-Output (MIMO) system is studied. Firstly, Nonlinear Extended Prediction Self-Adaptive Controller (NEPSAC) is designed for the steam/water loop system. Secondly, different prediction horizons are simulated within the NEPSAC algorithm. Based on simulation results, we conclude that specific tuning of prediction horizons based on loop’s dynamic outperforms the case when a trade-off is made and a single valued prediction horizon is used for all the loops

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A low computational cost, prioritized, multi-objective optimization procedure for predictive control towards cyber physical systems

    Get PDF
    Cyber physical systems consist of heterogeneous elements with multiple dynamic features. Consequently, multiple objectives in the optimality of the overall system may be relevant at various times or during certain context conditions. Low cost, efficient implementations of such multi-objective optimization procedures are necessary when dealing with complex systems with interactions. This work proposes a sequential implementation of a multi-objective optimization procedure suitable for industrial settings and cyber physical systems with strong interaction dynamics. The methodology is used in the context of an Extended Prediction self-adaptive Control (EPSAC) strategy with prioritized objectives. The analysis indicates that the proposed algorithm is significantly lighter in terms of computational time. The combination with an input-output formulation for predictive control makes these algorithms suitable for implementation with standardized process control units. Three simulation examples from different application fields indicate the relevance and feasibility of the proposed algorithm

    Multi-objective predictive control optimization with varying term objectives : a wind farm case study

    Get PDF
    This paper introduces the incentive of an optimization strategy taking into account short-term and long-term cost objectives. The rationale underlying the methodology presented in this work is that the choice of the cost objectives and their time based interval affect the overall efficiency/cost balance of wide area control systems in general. The problem of cost effective optimization of system output is taken into account in a multi-objective predictive control formulation and applied on a windmill park case study. A strategy is proposed to enable selection of optimality criteria as a function of context conditions of system operating conditions. Long-term economic objectives are included and realistic simulations of a windmill park are performed. The results indicate the global optimal criterium is no longer feasible when long-term economic objectives are introduced. Instead, local sub-optimal solutions are likely to enable long-term energy efficiency in terms of balanced production of energy and costs for distribution and maintenance of a windmill park
    corecore